4.0 Article

Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration

Journal

TISSUE ENGINEERING
Volume 10, Issue 1-2, Pages 53-61

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/107632704322791691

Keywords

-

Ask authors/readers for more resources

By reaction of poly(L-lactic acid) (PLLA) membrane with 1,6-hexanediamine, free amino groups were introduced onto a PLLA surface, through which biocompatible macromolecules such as gelatin, chitosan, or collagen were covalently immobilized by employing glutaraldehyde as a coupling agent. The existence of free amino groups on the aminolyzed PLLA surface was verified quantitatively by the ninhydrin analysis method, which revealed that surface NH2 density increased with 1,6-hexanediamine concentration or aminolyzing time. Scanning force microscopy measurements detected an increase in surface roughness after aminolysis. The culture of human umbilical vein endothelial cells (HUVECs) in vitro proved that the cell proliferation rate and cell activity of both aminolyzed and biomacromolecule-immobilized PLLAs were improved compared with control PLLA. Scanning electron microscopy observation showed more spreading and flat cell morphology after HUVECs were cultured for 4 days on either aminolyzed or biomacromolecule-immobilized PLLA membranes. Confluent cell layers were observed on the modified PLLA. Measurement of von Willebrand factor secreted by these HUVECs confirmed that endothelium function was maintained. Therefore, aminolysis and biomacromolecule immobilization are promising ways to accelerate endothelium regeneration, which is crucial for blood vessel tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available