4.3 Article

Silicon emproves water use efficiency in maize plants

Journal

JOURNAL OF PLANT NUTRITION
Volume 27, Issue 8, Pages 1457-1470

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1081/pln-200025865

Keywords

flow rate; maize; silicon; transpiration; water use efficiency

Categories

Ask authors/readers for more resources

The influence of silicon (Si) on water use efficiency (WUE) in maize plants (Zea mays L. cv. Nongda108) was investigated and the results showed that plants treated with 2 mmol L-1 silicic acid (Si) had 20% higher WUE than that of plants without Si application. The WUE was increased up to 35% when the plants were exposed to water stress and this was accounted for by reductions in leaf transpiration and water flow rate in xylem vessels. To examine the effect of silicon on transpiration, changes in stomata opening were compared between Si-treated and nontreated leaves by measuring transpiration rate and leaf resistance. The results showed that the reduction in transpiration following the application of silicon was largely due to a reduction in transpiration rate through stomata, indicating that silicon influences stomata movement. In xylem sap of plants treated with 2 mmol L-1 silicic acid, the Si concentration was 200-fold higher, while the Ca concentration which is mainly determined by the transpiration rate, was 2.5-fold lower than that of plants grown without Si. Furthermore, the water flow rate in xylem vessels of plants with and without Si was compared. Flow rate in plants with 2mmol L-1 Si was 20% lower than that without Si, which was accounted for by the increased affinity for water in xylem vessels induced by silica deposits. These results demonstrated the role of Si in improving WUE in maize plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available