4.4 Review

Structure and function of plant-type ferredoxins

Journal

PHOTOSYNTHESIS RESEARCH
Volume 81, Issue 3, Pages 289-301

Publisher

SPRINGER
DOI: 10.1023/B:PRES.0000036882.19322.0a

Keywords

beta-grasp motif; interaction with ferredoxin-dependent enzymes; plant-type ferredoxin; three-dimensional structure; X-ray crystallography

Categories

Ask authors/readers for more resources

The plant-type ferredoxins (Fds) are the [2Fe-2S] proteins that function primarily in photosynthesis; they transfer electrons from photoreduced Photosystem I to ferredoxin NADP(+). reductase in which NADPH is produced for CO2 assimilation. In addition, Fds partition electrons to various ferredoxin-dependent enzymes not only for assimilations of inorganic nitrogen and sulfur and N-2 fixation but also for regulation of CO2 assimilation cycle. Although Fds are small iron-sulfur proteins with molecular weight of 11 KDa, they are expected to interact with surprisingly many enzymes. Several Fd isoforms were found in non-photosynthetic cells as well as Fds in photosynthetic cells, leading to the recognition that they have differentiated physiological roles. In a quarter of century, X-ray crystallography and NMR spectroscopy provided wealth of structural data, which shed light on the structure-function relationship of the plant-type Fds and gave structural basis for the biochemical and spectroscopic properties so far accumulated. Thus the structural studies of Fds have come to a new era in which different roles of Fds and interactions with various enzymes are clarified on the basis of the tertiary and quaternary structures, although they are premature at present. This article reviews briefly the structures of the plant-type Fds together with their functions, properties, and interactions with Fd related enzymes. Lastly the folding motif of Fd, that has grown to be a large family by including many functionally unrelated proteins, is noted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available