4.3 Article

Oxidative stress underlies the mechanism for Ca2+-induced permeability transition of mitochondria

Journal

FREE RADICAL RESEARCH
Volume 38, Issue 1, Pages 27-35

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10715760310001626266

Keywords

adenine nucleotide translocase; apoptosis; cyclosporin A; membrane permeability transition; protein thiol; reactive oxygen species

Ask authors/readers for more resources

Recent studies demonstrated that the generation of intracellular reactive oxygen species (ROS) was enhanced prior to the onset of mitochondrial membrane permeability transition (MPT), a critical step for the induction of DNA fragmentation and apoptosis. Although Ca2+ induces typical MPT that involves depolarization and swelling of mitochondria and finally releases cytochrome c into cytosol, the mechanism by which ROS induce MPT remains unclear. In the presence of inorganic phosphate, Ca2+ increased the oxygen consumption and ROS production by isolated mitochondria as determined by a chemiluminescence (CHL) method using L-012. Ca2+ increased the generation of H2O2 by some mechanism that was inhibited by cyclosporin A but not by superoxide dismutase (SOD) and trifluoperazine. Ca2+ decreased the content of free thiols in adenine nucleotide translocase (ANT) in mitochondrial membranes with concomitant increase in ROS generation. The presence of cyclosporin A, trifluoperazine, or SOD inhibited the Ca2+-induced increase of L-012 CHL and decrease in the free thiols of ANT. These results indicate that Ca2+ increases the generation of ROS which oxidize the free thiol groups in mitochondrial ANT, thereby inducing MPT to release cytochrome c.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available