4.7 Article

Low dimensional adaptive texture feature vectors from class distance and class difference matrices

Journal

IEEE TRANSACTIONS ON MEDICAL IMAGING
Volume 23, Issue 1, Pages 73-84

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2003.819923

Keywords

adaptive features; Brodatz textures; class distance matrices; early ovarian cancer; image texture analysis; low dimensionality; pattern classification

Ask authors/readers for more resources

In many popular texture analysis methods, second or higher order statistics on the relation between pixel gray level values are stored in matrices. A high dimensional vector of predefined, nonadaptive features is then extracted from these matrices. Identifying a few consistently valuable features is important, as it improves classification reliability and enhances our understanding of the phenomena that we are modeling. Whatever sophisticated selection algorithm we use, there is a risk of selecting purely coincidental good feature sets, especially if we have a large number of features to choose from and the available data set is limited. In a unified approach to statistical texture feature extraction, we have used class distance and class difference matrices to obtain low dimensional adaptive feature vectors for texture classification. We have applied this approach to four relevant texture analysis methods. The new adaptive features outperformed the classical features when applied to the most difficult set of 45 Brodatz texture pairs. Class distance and difference matrices also clearly illustrated the difference in texture between cell nucleus images from two different prognostic classes of early ovarian cancer. For each of the texture analysis methods, one adaptive feature contained most of the discriminatory power of the method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available