4.5 Article

What you see is not what you catch: a comparison of concurrently collected net, Optical Plankton Counter, and Shadowed Image Particle Profiling Evaluation Recorder data from the northeast Gulf of Mexico

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.dsr.2003.09.008

Keywords

zooplankton; plankton-collecting devices; samplers; imaging; optics; abundance; biomass; vertical distributions OPC; USA; Florida; Gulf of Mexico; 27 degrees N 86 degrees W

Categories

Ask authors/readers for more resources

Zooplankton and suspended particles were sampled in the upper 100 m of the Gulf of Mexico with the High Resolution Sampler. This towed-platform can concurrently sample zooplankton with plankton nets, an Optical Plankton Counter (OPC) and the Shadowed Image Particle Profiling and Evaluation Recorder (SIPPER), a zooplankton imaging system. This allowed for direct comparison of mesozooplankton abundance, biomass, taxonomic composition and size distributions between simultaneously collected net samples, OPC data, and digital imagery. While the net data were numerically and taxonomically similar to that of previous studies in the region, analysis of the SIPPER imagery revealed that nets significantly underestimated larvacean, doliolid, protoctist and cnidarian/ ctenophore abundance by 300%, 379%, 522% and 1200% respectively. The inefficiency of the nets in sampling the fragile and gelatinous zooplankton groups led to a dry-weight biomass estimate less than half that of the SIPPER total and suggests that this component of the zooplankton assemblage is more important than previously determined for this region. Additionally, using the SIPPER data we determined that more than 29% of all mesozooplankton-sized particles occurred within 4 mm of another particle and therefore would not be separately counted by the OPC. This suggests that coincident counting is a major problem for the OPC even at the low zooplankton abundances encountered in low latitude oligotrophic systems like the Gulf. Furthermore, we found that the colonial cyanobacterium Trichodesmium was the most abundant recognizable organism in the SIPPER dataset, while it was difficult to quantify with the nets. For these reasons, the traditional method of using net samples to ground truth OPC data would not be adequate in describing the particle assemblage described here. Consequently we suggest that in situ imaging sensors be included in any comprehensive study of mesozooplankton. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available