4.5 Article

Elasticity solutions versus asymptotic sectional analysis of homogeneous, isotropic, prismatic beams

Journal

Publisher

ASME
DOI: 10.1115/1.1640367

Keywords

-

Categories

Ask authors/readers for more resources

The original three-dimensional elasticity problem of isotropic prismatic beams has been solved analytically by the variational asymptotic method (VAM). The resulting classical model (Euler-Bemoulli-like) is the same as the superposition of elasticity solutions of extension, Saint-Venant torsion, and pure bending in two orthogonal directions. The resulting refined model (Timoshenko-like) is the same as the superposition of elasticity solutions of extension, Saint-Venant torsion, and both bending and transverse shear in two orthogonal directions. The fact that the VAM can reproduce results from the theory of elasticity proves that two-dimensional finite-element-based cross-sectional analyses using the VAM, such as the variational asymptotic beam sectional analysis (VABS), have a solid mathematical foundation. One is thus able to reproduce numerically with VABS the same results for this problem as one obtains from three-dimensional elasticity, but with orders of magnitude less computational cost relative to three-dimensional finite elements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available