4.7 Article Proceedings Paper

Degradation of chlorinated phenols in water in the presence of H2O2 and water-soluble μ-nitrido diiron phthalocyanine

Journal

CATALYSIS TODAY
Volume 235, Issue -, Pages 14-19

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cattod.2014.03.016

Keywords

Chlorinated phenols; Depollution; Oxidation; Catalysis; Phthalocyanine; mu Nitrido dimer

Funding

  1. Agence Nationale de Recherche (ANR, France) [ANR-08-BLANC-0183-01]
  2. Region Rhone-Alpes

Ask authors/readers for more resources

Efficient disposal of pollutants is a key problem in the environmental context. In particular, chlorinated aromatic compounds are recalcitrant to biodegradation and conventional treatment methods. Iron phthalocyanines were previously shown to be efficient catalysts for the oxidative degradation of chlorinated phenols considered as priority pollutants. We have recently discovered mu-nitrido diiron phthalocyanines as powerful oxidation catalysts. Herein, we evaluate these emerging catalysts in the oxidation of chlorinated phenols in comparison with conventional mononuclear complex. Catalytic performance of iron tetrasulfophthalocyanine (FePcS) and corresponding mu-nitrido dimer [(FePcS)(2)N] have been compared in the oxidation of chlorinated phenols by hydrogen peroxide in water. The oxidative degradation of 2,6-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) has been studied. The ( FePcS)(2)N exhibited better catalytic properties than mononuclear FePcS in terms of conversion and mineralization (transformation of organic chlorine to Cl- and decrease of total organic carbon due to the formation of CO2). Kinetics of the DCP oxidation indicated that different reaction mechanisms are involved in the presence of FePcS and (FePcS)(2)N. The high catalytic activity of (FePcS)(2)N in the degradation and mineralization of chlorinated phenols make mu-nitrido diiron phthalocyanines promising catalyst to apply also in environmental remediation. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available