4.3 Article

High dietary intake of sodium selenite induces oxidative DNA damage in rat liver

Journal

NUTRITION AND CANCER-AN INTERNATIONAL JOURNAL
Volume 48, Issue 1, Pages 78-83

Publisher

ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
DOI: 10.1207/s15327914nc4801_11

Keywords

-

Ask authors/readers for more resources

One mechanism for the cancer-chemopreventive effects of high selenium (Se) intake is hypothesized to be antioxidant protection of DNA. In this work we examine DNA oxidation in whole animals as a function of dietary Se intake and carcinogen administration. Weanling male Sprague-Dawley rats were fed a basal, Torula yeast-based, Se-deficient diet supplemented with 0, 0.15, or 2.0 ppm Se as sodium selenite for 10 wk. They were then injected with 0, 0. 1, or 10 mg/kg body weight of the pro-oxidant carcinogen N-nitrosodiethylamine. High levels of carcinogen and high levels of selenite intake each increased concentration of 8-hydroxy-2'-deoxyguanosine in liver DNA. Se-dependent glutathione peroxidase I gene expression and enzyme activity were dramatically reduced by dietary Se deficiency but were unaffected by carcinogen administration. There were no significant main or interactive effects of Se or carcinogen on activity or gene expression of the DNA repair enzyme 8-oxoguanine glycosylase L These results do not support the hypothesis that high Se intake may be cancer-preventive by inhibiting oxidative DNA damage. Rather than inhibiting oxidative DNA damage, these findings suggest that high dietary intake of inorganic Se may promote in vivo DNA oxidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available