4.7 Article

FT-IR characterization of supported Ni-catalysts: Influence of different supports on the metal phase properties

Journal

CATALYSIS TODAY
Volume 197, Issue 1, Pages 38-49

Publisher

ELSEVIER
DOI: 10.1016/j.cattod.2012.06.016

Keywords

Ni catalysts; CO; CO2; CH3CN; FT-IR spectroscopy

Funding

  1. Istituto Italiano di Tecnologia (IIT)

Ask authors/readers for more resources

Supported Ni catalysts (2 wt.% Ni) were investigated by FT-IR and UV-vis-NIR spectroscopy, using CO2, CH3CN and CO as probe molecules. The supports studied range from acidic (SiO2), via amphoteric (Al2O3, Mg(Al)O) to basic oxides (MgO, CaO). CO2 adsorption experiments allowed to obtain the following qualitative scale for the basic strength of O-2-sites and Mn+O2- pairs: Ni/CaO > Ni/MgO >= Ni/Mg(Al)O >> Ni/Al2O3. On Ni/SiO2 these sites are absent. CH3CN adsorption allowed to reveal acidic and strong basic Lewis sites with the following results: Ni/SiO2 does not contain basic or acidic Lewis sites. Ni/Al2O3 contains acidic Lewis sites but no strong basic Lewis sites. The ratio between the strong basic and the acidic Lewis sites decreases in the order: Ni/MgO > Ni/CaO > Ni/Mg(Al)O. The strength of Lewis acid sites decreases in the order Ni/Al2O3 >> Ni/Mg(Al)O > Ni/MgO > Ni/CaO. Interaction of CO at room temperature results into formation of Ni(CO)(4) and/or Ni(CO)(y < 4) subcarbonyls. In the case of Ni/SiO2 and Ni/Al2O3, the sub-carbonyls are weakly interacting with the support. For the other supports, Ni(CO)(4) and Ni(CO)(y < 4) sub-carbonyls are stabilized on the metal oxide and give rise to mono-and poly-nuclear complexes (containing 2 or 3 Ni atoms). On Ni/Mg(Al)O, even larger Ni clusters seem to be formed. The support capability of stabilizing mono- and poly-nuclear complexes can be ranked as follows: SiO2 << Al2O3 < Mg(Al)O < CaO < MgO. A reactivity scale of the Ni-0 particles with CO is also proposed: Ni/SiO2 << Ni/Al2O3 < Ni/Mg(Al)O approximate to Ni/CaO < Ni/MgO. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available