4.7 Article Proceedings Paper

Effect of the preparation methods and alumina nanoparticles on the catalytic performance of Rh/ZrxCe1-xO2-Al2O3 in methane partial oxidation

Journal

CATALYSIS TODAY
Volume 171, Issue 1, Pages 104-115

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cattod.2011.04.021

Keywords

Methane partial oxidation; Rhodium; Ceria; Zirconia; Alumina

Funding

  1. Norwegian Research Council
  2. Statoil

Ask authors/readers for more resources

Rh supported on ZrxCe1-xO2-Al2O3 (x = 1, 0.5, 0.25, 0) catalysts are studied for catalytic partial oxidation of methane to synthesis gas. Alumina based nanocomposites are prepared through a citrate mediated route by modifying the alumina support with cerium and zirconyl nitrates via a simple evaporation-drying or a spray drying method. The effect of the commercial alumina types and the preparation method on the structure and thermostability of the nanocomposites has been studied based on the characterization by XRD, Raman spectroscopy, DTA, TEM and nitrogen adsorption-desorption measurements. Evonik Aeroxide AluC based nanocomposites prepared by spray drying give the highest thermostability concerning the sintering and phase transformation of the composites. Rh with a 0.1 or 0.5 wt.% loading is deposited on these nanocomposites by incipient wetness impregnation method. After calcination at 1173 K for 5 h, these nanocomposites supported Rh catalysts are tested in the fixed-bed reactor for methane partial oxidation. It is found that the smaller c-CeO2 crystal size in the nanocomposites, i.e. the higher oxygen vacancy concentration, would be responsible of the lower ignition temperature due to the enhanced reducibility, whereas the higher Rh dispersion would be responsible of the higher methane conversion and selectivity to synthesis gas. Additionally the Rh dispersion is found to be linked to the BET surface area. The stability of the nanocomposites is also studied under reaction conditions. (C) 2011 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available