4.7 Article Proceedings Paper

Enhancement of electrochemical stability and catalytic activity of Pt nanoparticles via strong metal-support interaction with sulfur-containing ordered mesoporous carbon

Journal

CATALYSIS TODAY
Volume 164, Issue 1, Pages 186-189

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cattod.2010.10.030

Keywords

Pt nanoparticle; Sulfur; Stability; Oxygen reduction; Strong metal-support interaction; Ordered mesoporous carbon

Ask authors/readers for more resources

Pt nanoparticles on sulfur-containing ordered mesoporous carbon (Pt/S-OMC) are obtained with 3 nm in size and 60 wt.% loading. XPS analysis shows that there is a strong metal-support interaction between Pt nanoparticles and S atoms embedded on the OMC support. This strong metal-support interaction fastens Pt nanoparticles upon the support and alters the electronic state of Pt from Pt(0) of bulk Pt to a slightly charged state of Pt(delta+). These features result in an improvement both in electrochemical stability and oxygen reduction reaction kinetics compared to Pt/OMC where the OMC does not have sulfur atoms. The approach of tuning the electronic state and the interaction of Pt on carbon supports by embedding heterogeneous atoms into the OMC can effectively improve the stability and catalytic activity of Pt nanoparticles. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available