4.7 Article

On the effective elastic moduli of carbon nanotubes for nanocomposite structures

Journal

COMPOSITES PART B-ENGINEERING
Volume 35, Issue 2, Pages 95-101

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2003.08.008

Keywords

nanostructures; mechanical properties; carbon nanotubes

Ask authors/readers for more resources

A critical review on the validity of different experimental and theoretical approaches to the mechanical properties of carbon nanotubes for advanced composite structures is presented. Most research has been recently conducted to study the properties of single-walled and multi-walled carbon nanotubes. Special attention has been paid to the measurement and modeling of tensile modulus, tensile strength, and torsional stiffness. Theoretical approaches such as molecular dynamic (MD) simulations, finite element analysis, and classical elastic shell theory were frequently used to analyze and interpret the mechanical features of carbon nanotubes. Due to the use of different fundamental assumptions and boundary conditions, inconsistent results were reported. MD simulation is a well-known technique that simulates accurately the chemical and physical properties of structures at atomic-scale level. However, it is limited by the time step, which is of the order of 10(-15) s. The use of finite element modeling combined with MD simulation can further decrease the processing time for calculating the mechanical properties of nanotubes. Since the aspect ratio of nanotubes is very large, the elastic rod or beam models can be adequately used to simulate their overall mechanical deformation. Although many theoretical studies reported that the tensile modulus of multi-walled nanotubes may reach 1 TPa, this value, however, cannot be directly used to estimate the mechanical properties of multi-walled nanotube/polymer composites due to the discontinuous stress transfer inside the nanotubes. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available