4.0 Article

General asymptotic Bayesian theory of quickest change detection

Journal

THEORY OF PROBABILITY AND ITS APPLICATIONS
Volume 49, Issue 3, Pages 458-497

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/S0040585X97981202

Keywords

change-point detection; sequential detection; asymptotic optimality; nonlinear renewal theory

Ask authors/readers for more resources

The optimal detection procedure for detecting changes in independent and identically distributed (i.i.d.) sequences in a Bayesian setting was derived by Shiryaev in the 1960s. However, the analysis of the performance of this procedure in terms of the average detection delay and false alarm probability has been an open problem. In this paper, we develop a general asymptotic change-point detection theory that is not limited to a restrictive i.i.d. assumption. In particular, we investigate the performance of the Shiryaev procedure for general discrete-time stochastic models in the asymptotic setting, where the false alarm probability approaches zero. We show that the Shiryaev procedure is asymptotically optimal in the general non-i.i.d. case under mild conditions. We also show that the two popular non-Bayesian detection procedures, namely the Page and the Shiryaev-Roberts-Pollak procedures, are generally not optimal (even asymptotically) under the Bayesian criterion. The results of this study are shown to be especially important in studying the asymptotics of decentralized change detection procedures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available