4.8 Article

Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

Journal

BMC MEDICINE
Volume 2, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1741-7015-2-37

Keywords

-

Funding

  1. ARDF (Alternatives Research and Development Foundation)
  2. FIRB [RBNE01NR34_007]
  3. [NIH-2RO1 HL51614]
  4. [NIH-RO1 NS 43284]
  5. [NIH-RO1 NS38195]
  6. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL051614] Funding Source: NIH RePORTER
  7. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS038195, R01NS043284] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Background: The multiple drug resistance protein (MDR1/P-glycoprotein) is overexpressed in glia and blood-brain barrier (BBB) endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs) can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. Methods: Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. Results: MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. Conclusions: Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available