4.4 Article

Controlled porosity osmotic pumps of highly aqueous soluble drug containing hydrophilic polymers as release retardants

Journal

PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY
Volume 9, Issue 4, Pages 435-442

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1081/PDT-200035802

Keywords

controlled porosity osmotic pumps; diltiazem hydrochloride; hydrophilic polymers; pore forming agents

Ask authors/readers for more resources

Controlled porosity osmotic pumps (CPOPs) are devoid of delivery orifice to release core contents and essentially possess pore-forming agent(s) in coating composition. When the pump comes in contact with aqueous media, pore-forming agent(s) generate pores through which core contents are delivered. Diltiazem hydrochloride (DLTZ) is a freely water-soluble drug and the release rates of DLTZ are higher from oral osmotic pumps including CPOPs, in which the drug release is controlled by concentration of pore-forming agents. The effect of appropriate concentration of hydroxypropyl methyl cellulose and sodium carboxy methyl cellulose mixture on the release of DLTZ from CPOPs was studied. In vitro drug release profiles were compared with that of different marketed controlled release formulations and statistically analysed to examine the suitability of CPOP for twice or once daily administration. Dissolution models were applied to drug release data in order to establish the mechanism of drug release and kinetics. Drug release from the CPOPs was effectively modified with the concentration of pore-forming agent in membrane and concentration of hydrophilic polymers in the core. CPOPs showed minimum 65% of consistent DLTZ release at 16 h. Statistical analysis confirmed that with an increase in the amount of hydrophilic polymers release rate decreased. Drug release from the systems follows Hixson-Crowell cube root model and mechanism of release follow non-Fickian diffusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available