4.0 Article

Simulation of the Interaction between Discrete Breathers of Various Types in a Pt3Al Crystal Nanofiber

Journal

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
Volume 121, Issue 2, Pages 217-221

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/S1063776115080154

Keywords

-

Funding

  1. Russian Foundation for Basic Research [15-32-50523, 14-08-90416 Ukr_a]
  2. Russian Science Foundation [14-13-00982]
  3. Mendeleev Foundation within a program of the Tomsk State University

Ask authors/readers for more resources

It is known that, in a molecular dynamics model of Pt3Al crystal, a discrete breather (DB) with soft type nonlinearity (DB1) can be excited, which is characterized by a high degree of localization on a light atom (Al), stationarity, as well as a frequency that lies in the gap of the phonon spectrum and decreases with increasing amplitude of the DB. In this paper, it is demonstrated that a DB with hard type nonlinearity (DB2) can be excited in a Pt3Al nanofiber; this DB is localized on several light atoms, can move along the crystal, and has a frequency that lies above the phonon spectrum and increases with the DB amplitude. It is noteworthy that the presence of free surfaces of a nanofiber does not prevent the existence of DB1 and DB2 in it. Collisions of two DBs counterpropagating with equal velocities, as well as a collision of DB2 with a standing DB1, are considered. Two colliding DBs with hard type nonlinearity are repelled almost elastically, losing only insignificant part of their energy during the interaction. DB2 is also reflected from a standing DB1; in this case, the energy of the breathers is partially scattered into the Al sublattice. The results obtained indicate that DBs can transfer energy along a crystal over large distances. During the collision of two or more DBs, the energy localized in space can be as high as a few electron-volts; this allows one to raise the question of the participation of DBs in structural transformations of the crystal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available