4.7 Article

Towards an assessment of the accuracy of density functional theory for first principles simulations of water

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 120, Issue 1, Pages 300-311

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1630560

Keywords

-

Ask authors/readers for more resources

A series of Car-Parrinello (CP) molecular dynamics simulations of water are presented, aimed at assessing the accuracy of density functional theory in describing the structural and dynamical properties of water at ambient conditions. We found negligible differences in structural properties obtained using the Perdew-Burke-Ernzerhof or the Becke-Lee-Yang-Parr exchange and correlation energy functionals; we also found that size effects, although not fully negligible when using 32 molecule cells, are rather small. In addition, we identified a wide range of values of the fictitious electronic mass (mu) entering the CP Lagrangian for which the electronic ground state is accurately described, yielding trajectories and average properties that are independent of the value chosen. However, care must be exercised not to carry out simulations outside this range, where structural properties may artificially depend on mu. In the case of an accurate description of the electronic ground state, and in the absence of proton quantum effects, we obtained an oxygen-oxygen correlation function that is overstructured compared to experiment, and a diffusion coefficient which is approximately ten times smaller. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available