4.7 Article

In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3

Journal

NEUROPSYCHOPHARMACOLOGY
Volume 29, Issue 1, Pages 32-38

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.npp.1300283

Keywords

valproic acid; GSK-3; Writ pathway; mania; depression; manic-depressive illness

Ask authors/readers for more resources

There is considerable interest in the possibility that small-molecule glycogen synthase kinase-3 inhibitors may have utility in the treatment of bipolar disorder, since glycogen synthase kinase-3 is a target of lithium. Although the in vitro inhibition of glycogen synthase kinase-3 by lithium occurs with a K-i of 1-2 mM, the degree of inhibition of this enzyme in the mammalian brain at therapeutically relevant concentrations has not fully been established, The transcription factor beta-catenin is an established marker of glycogen synthase kinase-3 inactivation because cytoplasmic levels are increased by inhibition of the enzyme. In this study, we measured beta-catenin protein levels after treatment with therapeutically relevant doses of lithium, valproate, and carbamazepine. Western blot revealed that 9 days of treatment with lithium and valproate, but not carbamazepine, increased beta-catenin protein levels in soluble fractions from the frontal cortex. The level of beta-catenin in the particulate fraction, which is not directly regulated by glycogen synthase kinase-3, did not change with any of the three drugs. Furthermore, real-time PCR revealed that lithium significantly decreased beta-catenin mRNA levels, which may represent compensation for an increase in beta-catenin stability. These results strongly suggest that lithium significantly inhibits brain glycogen synthase kinase-3 in vivo at concentrations relevant for the treatment of bipolar disorder.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available