4.5 Article

Reactive oxygen species-sensitive p38 MAPK controls thrombin-induced migration of vascular smooth muscle cells

Journal

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY
Volume 36, Issue 1, Pages 49-56

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.yjmcc.2003.09.014

Keywords

thrombin; reactive oxygen species; p38 MAPK; vascular endothelial growth factor; vascular smooth muscle cell; migration

Ask authors/readers for more resources

Thrombin has been implicated in the development of atherosclerosis and restenosis, in which migration of vascular smooth muscle cells (VSMC) is a crucial event. Thrombin-stimulated VSMC migration is associated with increased generation of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPKs), and production of growth factors and chemoattractants. In this study, we examined the interrelation of these signals to determine the pathway controlling thrombin-directed migration of human VSMC. Our results show that thrombin stimulated the production of ROS and activation of p38 MAPK. ROS were required for thrombin-induced VSMC migration since both generation of ROS and cell migration were significantly attenuated by inhibitors of NAD(P)H oxidase, diphenyleneiodonium (DPI) and apocynin (Apo.), and by the hydrogen peroxide scavenger, catalase (Cat.). Activation of p38 MAPK by thrombin was inhibited by DPI, Apo. and Cat., indicating ROS are used as messengers for activating this kinase. p38 MAPK is an important step since SB 203580, a selective inhibitor of p38 MAPK, suppressed the cell migration induced by thrombin. Furthermore, thrombin increased the expression of vascular endothelial growth factor (VEGF), a chemoattractant for VSMC, and this expression was inhibited by DPI, Apo., Cat. and SB 203580. Addition of anti-VEGF antibody significantly attenuated thrombin-induced migration. Collectively, the data presented here show that thrombin has stimulated VSMC migration and VEGF expression through an ROS-sensitive p38 MAPK pathway. VEGF synthesized and released by the cell served as a secondary mediator in thrombin-directed migration. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available