4.6 Article

Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C-2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 70, Issue 1, Pages 159-166

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.70.1.159-166.2004

Keywords

-

Ask authors/readers for more resources

The absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects: (i) growth on synthetic medium in glucose-limited chemostat cultures requires the addition of small amounts of ethanol or acetate and (ii) even in the presence of a C-2 compound, these strains cannot grow in batch cultures on synthetic medium with glucose. We used two subsequent phenotypic selection strategies to obtain a Pdc(-) strain without these growth defects. An acetate-independent Pdc(-) mutant was obtained via (otherwise) glucose-limited chemostat cultivation by progressively lowering the acetate content in the feed. Transcriptome analysis did not reveal the mechanisms behind the C-2 independence. Further selection for glucose tolerance in shake flasks resulted in a Pdc(-) S. cerevisiae mutant (TAM) that could grow in batch cultures (mu(max) = 0.20 h(-1)) on synthetic medium, with glucose as the sole carbon source. Although the exact molecular mechanisms underlying the glucose-tolerant phenotype were not resolved, transcriptome analysis of the TAM strain revealed increased transcript levels of many glucose-repressible genes relative to the isogenic wild type in nitrogen-limited chemostat cultures with excess glucose. In pH-controlled aerobic batch cultures, the TAM strain produced large amounts of pyruvate. By repeated glucose feeding, a pyruvate concentration of 135 g liter(-1) was obtained, with a specific pyruvate production rate of 6 to 7 mmol g of biomass(-1) h(-1) during the exponential-growth phase and an overall yield of 0.54 g of pyruvate g of glucose(-1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available