4.5 Article

Comparative Fos immunoreactivity in the brain after forebrain, brainstem, or combined seizures induced by electroshock, pentylenetetrazol, focally induced and audiogenic seizures in rats

Journal

NEUROSCIENCE
Volume 123, Issue 1, Pages 279-292

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2003.08.015

Keywords

epilepsy; immediate early gene; seizure models; rats

Categories

Ask authors/readers for more resources

To help discern sites of focal activation during seizures of different phenotype, the numbers of Fos immunoreactive (FI) neurons in specific brain regions were analyzed following brainstem-evoked, forebrain-evoked and forebrain/brainstem combination seizures induced by a variety of methods. First, pentylenetetrazol (PTZ, 50 mg/kg) induced forebrain-type seizures in some rats, or forebrain seizures that progressed to tonic/clonic brainstem-type seizures in other rats. Second, minimal electroshock induced forebrain seizures whereas maximal electroshock (MES) induced tonic brainstem-type seizures in rats. Third, forebrain seizures were induced in genetically epilepsy-prone rats (GEPRs) by microinfusion of bicuculline into the area tempestas (AT), while brainstem seizures in GEPRs were induced by audiogenic stimulation. A final set was included in which AT bicuculline-induced forebrain seizures in GEPRs were transiently interrupted by audiogenic seizures (AGS) in the same animals. These animals exhibited a sequence combination of forebrain clonic seizure, brainstem tonic seizure and back to forebrain clonic seizures. Irrespective of the methods of induction, clonic forebrain- and tonic/clonic brainstem-type seizures were associated with considerable Fos immunoreactivity in several forebrain structures. Tonic/ clonic brainstem seizures, irrespective of the methods of induction, were also associated with F1 in consistent brainstem regions. Thus, based on Fos numerical densities (FND, numbers of Fos-stained profiles), forebrain structures appear to be highly activated during both forebrain and brainstem seizures; however, facial and forelimb clonus characteristic of forebrain seizures are not observable during a brainstem seizure. This observation suggests that forebrain-seizure behaviors may be behaviorally masked during the more severe tonic brainstem seizures induced either by MES, PTZ or AGS in GEPRs. This suggestion was corroborated using the sequential seizure paradigm. Similar to findings using MES and PTZ, forebrain regions activated by AT bicuculline were similar to those activated by AGS in the GEPR. However, in the combination seizure group, those areas that showed increased FND in the forebrain showed even greater FND in the combination trial. Likewise, those areas of the brainstem showing FI in the AGS model, showed an even greater effect in the combination paradigm. Finally, the medial amygdala, ventral hypothalamus and cortices of the inferior colliculi showed markedly increased FND that appeared dependent upon activation of both forebrain and brainstem seizure activity in the same animal. These findings suggest these latter areas may be transitional areas between forebrain and brainstem seizure interactions. Collectively, these data illustrate a generally consistent pattern of forebrain Fos staining associated with forebrain-type seizures and a consistent pattern of brainstem Fos staining associated with brainstem-type seizures. Additionally, these data are consistent with a notion that separate seizure circuitries in the forebrain and brainstem mutually interact to facilitate one another, possibly through involvement of specific transition mediating nuclei. (C) 2003 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available