4.7 Article

Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis

Journal

CARDIOVASCULAR RESEARCH
Volume 103, Issue 1, Pages 100-110

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvu070

Keywords

MicroRNA; HBP1; YY1; Foam cell formation; Atherogenesis

Funding

  1. National Natural Science Foundation of China [81130005, 91339205, 31229002, 31101037, 81000117]
  2. Ministry of Science and Technology of China [2010CB945600, 2011CB811304]
  3. Chinese Academy of Sciences [XDA01040306]

Ask authors/readers for more resources

MicroRNAs (miRNAs) play key roles in inflammatory responses of macrophages. However, the function of miRNAs in macrophage-derived foam cell formation is unclear. Here, we investigated the role of miRNAs in macrophage-derived foam cell formation and atherosclerotic development. Using quantitative reverse transcription-PCR (qRT-PCR), we found that the level of miR-155 expression was increased significantly in both plasma and macrophages from atherosclerosis (ApoE(-/-)) mice. We identified that oxidized low density lipoprotein (oxLDL) induced the expression and release of miR-155 in macrophages, and that miR-155 was required to mediate oxLDL-induced lipid uptake and reactive oxygen species (ROS) production of macrophages. Furthermore, ectopic overexpression and knockdown experiments identified that HMG box-transcription protein1 (HBP1) is a novel target of miR-155. Knockdown of HBP1 enhanced lipid uptake and ROS production in oxLDL-stimulated macrophages, and overexpression of HBP1 repressed these effects. Furthermore, bioinformatics analysis identified three YY1 binding sites in the promoter region of pri-miR-155 and verified YY1 binding directly to its promoter region. Detailed analysis showed that the YY1/HDAC2/4 complex negatively regulated the expression of miR-155 to suppress oxLDL-induced foam cell formation. Importantly, inhibition of miR-155 by a systemically delivered antagomiR-155 decreased clearly lipid-loading in macrophages and reduced atherosclerotic plaques in ApoE(-/-) mice. Moreover, we observed that the level of miR-155 expression was up-regulated in CD14(+) monocytes from patients with coronary heart disease. Our findings reveal a new regulatory pathway of YY1/HDACs/miR-155/HBP1 in macrophage-derived foam cell formation during early atherogenesis and suggest that miR-155 is a potential therapeutic target for atherosclerosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available