4.6 Review

Structure-based mechanism of photosynthetic water oxidation

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 6, Issue 20, Pages 4754-4763

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b407500e

Keywords

-

Ask authors/readers for more resources

The recently-published 3.5 Angstrom resolution X-ray crystal structure of a cyanobacterial photosystem II (PDB entry 1S5L) provides a detailed architecture of the oxygen-evolving complex (OEC) and the surrounding amino-acids [K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Science, 2004, 203, 1831-1838]. The revealed geometry of the OEC lends weight to certain hypothesized mechanisms for water-splitting, including the one propounded by this group, in which a calcium-bound water acts as a nucleophile to attack the oxygen of a Mn-V=O group in the crucial O-O bond-forming step [J. S. Vrettos, J. Limburg and G. W. Brudvig, Biochim. Biophys. Acta, 2001, 1503, 229-245]. Here we re-examine this mechanism in the light of the new crystallographic information and make detailed suggestions concerning the mechanistic functions (especially the redox and proton-transfer roles) of calcium, chloride and certain amino-acid residues in and around the OEC. In particular, we propose an important role for an arginine residue, CP43-Arg357, in abstracting protons from a substrate water molecule during the water-splitting reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available