4.6 Article

Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 151, Issue 11, Pages A1778-A1788

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.1798411

Keywords

-

Ask authors/readers for more resources

The lithium cycling efficiencies of the lithium anode in the ethylene carbonate (EC)-based electrolytes were improved by adding vinylene carbonate (VC) to the electrolyte. We analyzed the surface films of deposited lithium on a nickel substrate in a VC-containing electrolyte with scanning electron microscopy, Fourier transform infrared spectroscopy, two-dimensional nuclear magnetic resonance, gel permeation chromatography, and X-ray photoelectron spectroscopy. The corresponding surface films comprise various polymeric species including poly-(vinylene carbonate) [poly-(VC)], oligomeric VC, and a ring-opened polymer of VC. Furthermore, the surface film of carbon double bonds (C = C-O) and lithium carboxylate (RCOOLi) as reduction products of VC were formed on deposited lithium. These structures of the surface film on the lithium anode were similar to those on the graphite anode. At elevated temperatures, the VC-containing electrolyte led to the formation of surface films comprising poly(VC). The VC-derived polymeric surface film, which exhibited gel-like morphology, could prevent the deleterious reaction which occurs between deposited lithium and the electrolyte, resulting in an enhanced lithium cycling efficiency. (C) 2004 The Electrochemical Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available