4.6 Article Proceedings Paper

Mechanism for the conductivity changes caused by membrane electroporation of CHO cell-pellets

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 6, Issue 24, Pages 5564-5574

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b411037d

Keywords

-

Ask authors/readers for more resources

Electric field pulses, applied to densely packed pellets of Chinese hamster ovary (CHO) cells of mean radius (a) over bar (c) = 7.5 +/- 0.7 mum, cause major electric conductivity changes, described by three kinetic normal modes. The first mode reflects Wien effects of ionic atmosphere perturbations and ion pair dissociations ( cell surfaces). Using Maxwell's conductivity equation, the second and third mode are converted to the respective membrane conductivity modes. Electrothermodynamic analysis in terms of structural transitions from closed ( C) to porated (P) membrane states of very different lifetimes, according to the scheme (C (-->)(<--) C-1) (-->)(<--) (P-2 (-->)(<--) P-3), yields the mean pore radii (r) over bar (2) = 1.00 +/- 0.05 nm (P-2) pores and (r) over bar (3) = 1.5 +/- 0.1 nm (P-3) at T = 293 K (20 degreesC). The relaxation time tau(2) (P-2-formation) reflects the rate limiting step (C (-->)(<--) C-1), associated with the activation dipole moment of Deltam(1) = 63 x 10(-3)0 C m (or 19 Debye units), suggesting orientational changes of dipolar lipid head groups, in the solution membrane interfaces preceding the actual pore formations. Besides: the field-dependencies of the pore fractions f(2) and f(3) (order of 10(-3)), the field reduction factors f(lambda,i)less than or equal to 1 and the membrane voltage, we obtain the zero-field pore conductivities lambda(p,2)(0) = 1.7 x 10(-2) mS cm(-1) (P-2) and lambda(p,3)(0) = 0.10 mS cm(-1) (P-3) and the membrane conductivity lambda(m)(0) = 3.2 muS m(-1). The post-field conductivity changes, due to the long-lived P-3-pores, are analyzed in terms of time- (and field-) dependent efflux coefficients. The characteristic post-field pore resealing time tau(R) = tau(3)(0) = 45 +/- 3 s is independent of the field strength of the causative pulse and independent of the distance between the two electrodes. These results are an essential part for the optimization of the electrical pulse parameters, also for the clinical electrotransfer of bioactive substances into aggregated biological cells ( tissue).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available