4.6 Article

Tuning proton coupled electron transfer from tyrosine: A competition between concerted and step-wise mechanisms

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 6, Issue 20, Pages 4851-4858

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b407383e

Keywords

-

Ask authors/readers for more resources

The intra-molecular, proton-coupled electron transfer from a tyrosine residue to covalently linked tris-bipyridine ruthenium(III) complexes in aqueous solution (Ru-III-TyrOH --> Ru-II-TyrO(.) + H+) is studied in two complexes. The Ru-III-TyrOH state is generated by laser flash-induced photo-oxidation in the presence of the electron acceptor methyl viologen. The reaction is shown to follow either a concerted electron transfer-deprotonation (CEP) mechanism or a step-wise mechanism with electron transfer followed by deprotonation (ETPT). The CEP is characterised by a pH-dependent rate constant, a large reorganisation energy (lambda = 1.4 eV at pH = 7) and a significant kinetic isotope effect: k(H)/k(D) = 1.5-3. We can explain the pH-dependence and the high lambda by the pH-dependent DeltaGdegrees' for proton release to bulk water, and by the additional reorganisation energy associated with the proton transfer coordinate (both internal and solvent), respectively. In the calculation of lambda from the temperature dependent rate constant, correction is made for the large entropy increase of the reaction (TDeltaS(rxn) approximate to0.41 eV at pH = 7 and T = 298 K). The step-wise ETPT mechanism on the other hand shows a pH-independent rate, a lower reorganisation energy and no kinetic isotope effect. We propose that our complexes can be used as models to understand proton-coupled electron transfer in radical proteins. We show that the mechanism can be switched between CEP and ETPT by tuning the reaction pH and the electrochemical potential of the Ru-III/II oxidant. With a low driving force for the overall reaction the energy conservative CEP mechanism may dominate, in spite of the higher reorganisation energy as compared to ETPT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available