4.6 Article

Internalization of caveolin-1 scaffolding domain facilitated by Antennapedia homeodomain attenuates PAF-induced increase in microvessel permeability

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00667.2003

Keywords

endothelial nitric oxide synthase; nitric oxide; caveolae; individually perfused venular microvessel; hydraulic conductivity

Funding

  1. NHLBI NIH HHS [R01 HL056237, HL-56237] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R29HL056237, R01HL056237] Funding Source: NIH RePORTER

Ask authors/readers for more resources

We demonstrated previously that inhibition of endothelial nitric oxide synthase ( NOS), using pharmacological inhibitors, attenuated the ionomycin- and ATP- induced increases in microvessel permeability ( Am J Physiol Heart Circ Physiol 272: H176 - H185, 1997). Recently, the scaffolding domain of caveolin- 1 ( CAV) has been implicated as a negative regulator of endothelial NOS ( eNOS). To examine the role of CAV- eNOS interaction in regulation of permeability in intact microvessels, the effect of internalized CAV on the platelet- activating factor ( PAF)- induced permeability increase was investigated in rat mesenteric venular microvessels. Internalization of CAV was achieved by perfusion of individual vessels using a fusion peptide of CAV with Antennapedia homeodomain ( AP- CAV) and visualized by fluorescence imaging and electron microscopy. Changes in microvessel permeability were evaluated by measuring hydraulic conductivity ( L-p) in individually perfused microvessels. We found that the PAF ( 10 nM)- induced L-p increase was significantly attenuated from 6.0 +/- 0.9 ( n = 7) to 2.0 +/- 0.3 ( n = 5) times control after microvessels were perfused with 10 muM AP- CAV for 2 h. The magnitude of this reduction is comparable with that of the inhibitory effect of N-omega- monomethyl- L- arginine on the PAF- induced L-p increase. In contrast, perfusion with 10 muM AP alone for 2 h modified neither basal L-p nor the vessel response to PAF. These results indicate that CAV plays an important role in regulation of microvessel permeability. The inhibitory action of CAV on permeability increase might be attributed to its direct inactivation of eNOS. In addition, this study established a method for studying protein- protein interaction- induced functional changes in intact microvessels and demonstrated AP as an efficient vector for translocation of peptide across the cell membrane in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available