4.5 Article Proceedings Paper

Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 49, Issue 5-6, Pages 57-64

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2004.0737

Keywords

anaerobic ammonium oxidation; MBR; OLAND; oxygen limitation; partial nitritation

Ask authors/readers for more resources

Nitrogen removal from sludge reject water was obtained by oxygen-limited partial nitritation resulting in nitrite accumulation in a first stage, followed by autotrophic denitrification of nitrite with ammonium as electron donor (similar to anaerobic ammonium oxidation) in a second stage. Two membrane-assisted bioreactors (MBRs) were used in series to operate with high sludge ages and subsequent high volumetric loading rates, achieving 1.45 kg N m(-3) day(-1) for the partial nitritation MBR and 1.1 kg N m(-3) day(-1) for the anaerobic ammonium oxidation MBR. Biomass retention in the nitritation stage ensured flexibility towards loading rate and operating temperature. Nitrite oxidisers were out-competed at low oxygen and high free ammonia concentration. Biomass retention in the second MBR prevented wash-out of the slowly growing bacteria. Nitrite and ammonium were converted to dinitrogen gas in a reaction ratio of 1.05, thereby maintaining nitrite limitation to assure process stability. The anoxic consortium catalysing the autotrophic denitrification process consisted of Nitrosomonas-like aerobic ammonium oxidizers and anaerobic ammonium oxidizing bacteria closely related to Kuenenia stuttgartiensis. The overall removal efficiency of the combined process was 82% of the incoming ammonium according to a total nitrogen removal rate of 0.55 kg N m(-3) day(-1), without adding extra carbon source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available