3.8 Article

Numerical calculations of the pH of maximal protein stability - The effect of the sequence composition and three-dimensional structure

Journal

EUROPEAN JOURNAL OF BIOCHEMISTRY
Volume 271, Issue 1, Pages 173-185

Publisher

WILEY
DOI: 10.1046/j.1432-1033.2003.03917.x

Keywords

electrostatics; pH stability; pK(a); optimum pH

Funding

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R37GM030518, R01GM030518] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [GM-30518] Funding Source: Medline

Ask authors/readers for more resources

A large number of proteins, found experimentally to have different optimum pH of maximal stability, were studied to reveal the basic principles of their preferenence for a particular pH. The pH-dependent free energy of folding was modeled numerically as a function of pH as well as the net charge of the protein. The optimum pH was determined in the numerical calculations as the pH of the minimum free energy of folding. The experimental data for the pH of maximal stability (experimental optimum pH) was reproducible (rmsd = 0.73). It was shown that the optimum pH results from two factors - amino acid composition and the organization of the titratable groups with the 3D structure. It was demonstrated that the optimum pH and isoelectric point could be quite different. In many cases, the optimum pH was found at a pH corresponding to a large net charge of the protein. At the same time, there was a tendency for proteins having acidic optimum pHs to have a base/acid ratio smaller than one and vice versa. The correlation between the optimum pH and base/acid ratio is significant if only buried groups are taken into account. It was shown that a protein that provides a favorable electrostatic environment for acids and disfavors the bases tends to have high optimum pH and vice versa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available