4.7 Article

Activation of mTOR modulates SREBP-2 to induce foam cell formation through increased retinoblastoma protein phosphorylation

Journal

CARDIOVASCULAR RESEARCH
Volume 100, Issue 3, Pages 450-460

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvt203

Keywords

Inflammation; Mammalian target of rapamycin; LDL receptor pathway; Foam cell formation

Funding

  1. Natural Science Foundation of Jiangsu Province [BK2009279]
  2. National Natural Science Foundation of China [81170792, 81070571]

Ask authors/readers for more resources

Our previous studies demonstrated that inflammation contributes to atherosclerosis through disruption of the low density lipoprotein receptor (LDLr) pathway. However, this effect is overridden by rapamycin, which is an inhibitor of mammalian target of rapamycin (mTOR). This study investigated the role of the mTOR pathway in atherosclerosis in vivo and in vitro. To induce inflammation, we used subcutaneous injection of 10 casein in apolipoprotein E knockout (ApoE KO) mice and lipopolysaccharide stimulation in rat vascular smooth muscle cells (VSMCs). Results showed that inflammation increased lipid accumulation in aortas of ApoE KO mice and in VSMCs, which were correlated with increased expressions of LDLr, sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP), and SREBP-2 as well as with enhanced translocation of SCAP/SREBP-2 complex from the endoplasmic reticulum (ER) to the Golgi. Furthermore, inflammation increased both the percentage of cells in the S phase of cell cycle and protein expressions of the phosphorylated forms of retinoblastoma tumour suppressor protein (Rb), mTOR, eukaryotic initiation factor 4E-binding protein 1 (4EBP1), and P70 S6 kinase. After treatment with rapamycin or mTOR siRNA, the activity of the mTOR pathway was blocked. Interestingly, the expression levels of LDLr, SCAP, and SREBP-2 and the translocation of SCAP/SREBP-2 complex from the ER to the Golgi in treated VSMCs were decreased even in the presence of inflammatory stress. Our findings demonstrate for the first time that inflammation disrupts LDLr feedback regulation through the activation of the mTOR pathway. Increased mTORC1 activity was found to up-regulate SREBP-2-mediated cholesterol uptake through Rb phosphorylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available