4.6 Article

Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001)

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 78, Issue 2, Pages 165-176

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s00339-003-2301-7

Keywords

-

Ask authors/readers for more resources

Time-resolved two-photon photoelectron spectroscopy is used to study the dynamics of non-equilibrium electron and hole distributions at bare and D2O-covered Ru(001) following optical excitation (55-fs, 800-nm pulses) with variable fluence (0.04-0.6 mJ cm(-2)). Within the first 0.5 ps we observe an ultra-fast transient of the excited-carrier population and energy density at the surface which is accompanied by pronounced deviations of the electron-energy distribution from a (thermalized) Fermi-Dirac distribution. Comparison of the transient energy density of the photoexcited electrons at the surface with predictions of the two-temperature model provides fair agreement up to 400 fs, but exhibits a systematically lower energy density at later times, where electrons and phonons are equilibrated. We propose that this reduced energy density at the surface originates from ultra-fast energy transport of non-thermal electrons into the bulk in competition to electron-phonon coupling at the surface. This is corroborated by extending the two-temperature model to account for non-thermal, photoexcited electrons, whereby quantitative agreement with experiment can only be achieved if ballistic transport and reduced electron-phonon coupling is incorporated for non-thermal electrons. Implications for surface femtochemistry are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available