4.3 Article

Morphological control of BaSO4 microstructures by double hydrophilic block copolymer mixtures

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 14, Issue 14, Pages 2269-2276

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b400803k

Keywords

-

Ask authors/readers for more resources

A mixture of two double hydrophilic block copolymers (DHBCs) was used to control the crystallization and organization of BaSO4 microstructures as a simple model system for the synergistic action of multiple polymers in biomineralization processes. Independently, poly(ethylene oxide)-block-poly(methacrylic acid) (PEO-b-PMAA) or a partially monophosphonated derivative, PEO-b-PMAA-PO3H2(1%), yielded spherical/elongated particles, or fiber bundles/cones, respectively, when used as additives for BaSO4 crystallization, whereas similar experiments with combinations of the two DHBCs at various w/w ratios produced modified forms of these complex morphologies. Depending on the total DHBC concentration, two different morphogenetic mechanisms were identified. At 1 mg mL(-1), nucleation and outgrowth of fiber bundles/cones from spherical precursor particles could be controlled by the polymer mixing ratio to produce materials with a shuttlecock-like microstructure. The results were consistent with a predominantly cumulative mechanism involving a time-dependent sequence during which each DHBC acts independently. In contrast, depending on the ratio of copolymers used, disk-based cones, banded cones or interconnecting sheets of co-aligned fiber bundles were produced at a total polymer concentration of 3 mg mL(-1) by a cooperative mechanism involving the combined interaction of both DHBCs with growing BaSO4 crystals. The results reveal that the use of polymer mixtures as additives opens up new variables for crystal morphogenesis compared to systems involving single polymers, and indicate that it should be possible to develop this approach to model the complexity of a wide range of biomineralization processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available