4.7 Article

NADPH oxidase activation by hyperglycaemia in cardiomyocytes is independent of glucose metabolism but requires SGLT1

Journal

CARDIOVASCULAR RESEARCH
Volume 92, Issue 2, Pages 237-246

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvr230

Keywords

Glucotoxicity; Glucose metabolism; Oxidative stress; NADPH oxidase; SGLT

Funding

  1. Fonds National de la Recherche Scientifique et Medicale (FNRS), Belgium
  2. Actions de Recherche Concertees, Belgium
  3. Fund for Scientific Research in Industry and Agriculture, Belgium
  4. 'Bourse du Patrimoine' from Universite catholique de Louvain

Ask authors/readers for more resources

Aims Exposure to high glucose (HG) stimulates reactive oxygen species (ROS) production by NADPH oxidase in cardiomyocytes, but the underlying mechanism remains elusive. In this study, we have dissected the link between glucose transport and metabolism and NADPH oxidase activation under hyperglycaemic conditions. Methods and results Primary cultures of adult rat cardiomyocytes were exposed to HG concentration (HG, 21 mM) and compared with the normal glucose level (LG, 5 mM). HG exposure activated Rac1GTP and induced p47phox translocation to the plasma membrane, resulting in NADPH oxidase (NOX2) activation, increased ROS production, insulin resistance, and eventually cell death. Comparison of the level of O-linked N-acetylglucosamine (O-GlcNAc) residues in LG-and HG-treated cells did not reveal any significant difference. Inhibition of the pentose phosphate pathway (PPP) by 6-aminonicotinamide counteracted ROS production in response to HG but did not prevent Rac-1 upregulation and p47phox translocation leading to NOX2 activation. Modulation of glucose uptake barely affected oxidative stress and toxicity induced by HG. More interestingly, non-metabolizable glucose analogues (i.e. 3-O-methyl-D-glucopyranoside and alpha-methyl-D-glucopyranoside) reproduced the toxic effect of HG. Inhibition of the sodium/glucose cotransporter SGLT1 by phlorizin counteracted HG-induced NOX2 activation and ROS production. Conclusion Increased glucose metabolism by itself does not trigger NADPH oxidase activation, although PPP is required to provide NOX2 with NADPH and to produce ROS. NOX2 activation results from glucose transport through SGLT1, suggesting that an extracellular metabolic signal transduces into an intracellular ionic signal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available