4.7 Article

Two distinct phases of calcium signalling under flow

Journal

CARDIOVASCULAR RESEARCH
Volume 91, Issue 1, Pages 124-133

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvr033

Keywords

Shear stress; Laminar flow; FRET; Calcium; Live cell imaging

Funding

  1. National Institute of Health (NIH) [HL098472, CA139272, NS063405]
  2. National Science Foundation (NSF) [CBET0846429, CMMI0800870]
  3. Wallace H. Coulter Foundation
  4. National Natural Science Foundation of China (NSFC) [10972139]

Ask authors/readers for more resources

Aims High shear stress (HSS) can have significant impact on angiogenesis and atherosclerosis in collateral arteries near the bifurcation and curvature regions. Here, we investigate the spatiotemporal pattern of HSS-induced intracellular calcium alteration. Methods and results Genetically encoded biosensors based on fluorescence resonance energy transfer were targeted in the cytoplasm and the endoplasmic reticulum (ER) to visualize the subcellular calcium dynamics in bovine aortic endothelial cells under HSS (65 dyn/cm(2)). Upon HSS application, the intracellular Ca(2+) concentration ([Ca(2+)](i)) increased immediately and maintained a sustained high level, while the ER-stored calcium had a significant decrease only after 300 s. The perturbation of calcium influx across the plasma membrane (PM) by the removal of extracellular calcium or the blockage of membrane channels inhibited the early phase of [Ca(2+)] i increase upon HSS application, which was further shown to be sensitive to the magnitudes of shear stress and the integrity of cytoskeletal support. In contrast, Src, phospholipase C(PLC), and the inositol 1,4,5-trisphosphate receptor (IP(3)R) can regulate the late phase of HSS-induced [Ca(2+)](i) increase via the promotion of the ER calcium efflux. Conclusion The HSS-induced [Ca(2+)](i) increase consists of two well-co-ordinated phases with different sources and mechanisms: (i) an early phase due to the calcium influx across the PM which is dependent on the mechanical impact and cytoskeletal support and (ii) a late phase originated from the ER-calcium efflux which is regulated by the Src, PLC, and IP(3)R signalling pathway. Therefore, our work presented new molecular-level insights into systematic understanding of mechanotransduction in cardiovascular systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available