3.8 Article

Binding analyses between human PPAR gamma-LBD and ligands - Surface plasmon resonance biosensor assay correlating with circular dichroic spectroscopy determination and molecular docking

Journal

EUROPEAN JOURNAL OF BIOCHEMISTRY
Volume 271, Issue 2, Pages 386-397

Publisher

WILEY
DOI: 10.1046/j.1432-1033.2003.03937.x

Keywords

PPAR gamma; receptor binding; surface plasmon resonance biosensor; circular dichroism spectroscopy; molecular docking

Ask authors/readers for more resources

The binding characteristics of a series of PPARgamma ligands (GW9662, GI 262570, cis-parinaric acid, 15-deoxy-Delta(12,14)-prostaglandin J(2), LY171883, indomethacin, linoleic acid, palmitic acid and troglitazone) to human PPARgamma ligand binding domain have been investigated for the first time by using surface plasmon resonance biosensor technology, CD spectroscopy and molecular docking simulation. The surface plasmon resonance biosensor determined equilibrium dissociation constants (K-D values) are in agreement with the results reported in the literature measured by other methods, indicating that the surface plasmon resonance biosensor can assume a direct assay method in screening new PPARgamma agonists or antagonists. Conformational changes of PPARgamma caused by the ligand binding were detected by CD determination. It is interesting that the thermal stability of the receptor, reflected by the increase of the transition temperature (T-m), was enhanced by the binding of the ligands. The increment of the transition temperature (DeltaT(m)) of PPARgamma owing to ligand binding correlated well with the binding affinity. This finding implies that CD could possibly be a complementary technology with which to determine the binding affinities of ligands to PPARgamma. Molecular docking simulation provided reasonable and reliable binding models of the ligands to PPARgamma at the atomic level, which gave a good explanation of the structure-binding affinity relationship for the ligands interacting with PPARgamma. Moreover, the predicted binding free energies for the ligands correlated well with the binding constants measured by the surface plasmon resonance biosensor, indicating that the docking paradigm used in this study could possibly be employed in virtual screening to discover new PPARgamma ligands, although the docking program cannot accurately predict the absolute ligand-PPARgamma binding affinity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available