4.5 Article

Importance of equilibration time in the partitioning and toxicity of zinc in spiked sediment bioassays

Journal

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
Volume 23, Issue 1, Pages 65-71

Publisher

WILEY-BLACKWELL
DOI: 10.1897/03-176

Keywords

zinc; toxicity; equilibration time; sediment aging; acid volatile sulfides

Ask authors/readers for more resources

The influences of spiked Zn concentrations (1-40 mumol/g) and equilibration time (similar to95 d) on the partitioning of Zn between pore water (PW) and sediment were evaluated with estuarine sediments containing two levels (5 and 15 mumol/g) of acid volatile sulfides (AVS). Their influence on Zn bioavailability was also evaluated by a parallel, 10-d amphipod (Leptocheirus plumulosus) mortality test at 5, 20, and 85 d of equilibration. During the equilibration, AVS increased (up to twofold) with spiked Zn concentration ([Zn]), whereas Zn-simultaneously extracted metals ([SEM]; Zn with AVS) remained relatively constant. Concentrations of Zn in PW decreased most rapidly during the initial 30 d and by 11- to 23-fold during the whole 95-d equilibration period. The apparent partitioning coefficient (K(pw,) ratio of [Zn] in SEM to PW) increased by 10- to 20-fold with time and decreased with spiked [Zn] in sediments. The decrease of PW [Zn] could be explained by a combination of changes in AVS and redistribution of Zn into more insoluble phases as the sediment aged. Amphipod mortality decreased significantly with the equilibration time, consistent with decrease in dissolved [Zn]. The median lethal concentration (LC50) value (33 muM) in the second bioassay, conducted after 20 d of equilibration, was twofold the LC50 in the initial bioassay at 5 d of equilibration, probably because of the change of dissolved Zn speciation. Sediment bioassay protocols employing a short equilibration time and high spiked metal concentrations could accentuate partitioning of metals to the dissolved phase and shift the pathway for metal exposure toward the dissolved phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available