4.5 Review

Flt3 receptor tyrosine kinase as a drug target in leukemia

Journal

CURRENT PHARMACEUTICAL DESIGN
Volume 10, Issue 16, Pages 1867-1883

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1381612043384394

Keywords

Flt3; receptor tyrosine kinase; signal transduction; mutations; leukemia; AML; inhibitors

Ask authors/readers for more resources

The hematopoietic class III receptor tyrosine kinase (RTK) Flt3 (Flk2, STK1) has recently received much attention as a potential drug target. Activation of Flt3 by different types of mutations plays an important role for proliferation, resistance to apoptosis, and prevention of differentiation of leukemic blasts in acute myeloid leukemia (AML). At least one type of such mutations - an internal tandem duplication in the Flt3 juxtamembrane domain (Flt3-ITD) - has been associated with an unfavorable prognosis. Signal transduction of Flt3 involves activation of several conserved pathways, including the RAS/MAP-Kinase and the phosphoinositide-3-kinase/Akt signaling cascades. Transforming versions of Flt3 exhibit altered signaling, for example a very pronounced activation of STAT5, ultimately resulting in alternate profiles of gene expression and cell transformation. Selective inhibitors of Flt3 tyrosine kinase activity have the potential to suppress aberrant Flt3 signaling. Although highly homologous to other class III RTKs, Flt3 is resistant to the phenylaminopyrituidine ST1571 (Gleevec, Imatinib), a potent inhibitor of other RTKs in the family, such as the PDGFbeta-receptor or c-Kit. ST1571 binding to Flt3 is prevented by the phenylalanine 691 side-chain in the ATP binding center and mutating this site to threonine renders the corresponding Flt3 mutant sensitive to ST1571. Compounds of several other structural families.. including the quinoxaline AG1296, the bis(1H-2-indolyl)-1-methanone D-65476, the indolinones SU5416 and SU11248, the indolocarbazoles PKC412 and CEP-701, and the piperazonyl quinazoline CT53518, are potent inhibitors of FIG kinase. They exhibit different selectivity profiles, both with respect to other kinases and among wildtype Flt3 and its activated versions. These compounds hold promise as novel drugs against AML and as probes for understanding activation mechanisms and signaling pathways in the class III RTK family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available