4.7 Article

QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize

Journal

THEORETICAL AND APPLIED GENETICS
Volume 108, Issue 2, Pages 349-359

Publisher

SPRINGER
DOI: 10.1007/s00122-003-1436-4

Keywords

-

Funding

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [S06GM008225] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [S06 GM008225] Funding Source: Medline

Ask authors/readers for more resources

Carotenoids are a class of fat-soluble antioxidant vitamin compounds present in maize (Zea mays L.) that may provide health benefits to animals or humans. Four carotenoid compounds are predominant in maize grain: beta-carotene, beta-cryptoxanthin, zeaxanthin, and lutein. Although beta-carotene has the highest pro-vitamin A activity, it is present in a relatively low concentration in maize kernels. We set out to identify quantitative trait loci (QTL) affecting carotenoid accumulation in maize kernels. Two sets of segregating families were evaluated-a set of F-2:3 lines derived from a cross of W64a x A632, and their testcross progeny with AE335. Molecular markers were evaluated on the F-2:3 lines and a genetic linkage map created. High-performance liquid chromatography was performed to measure beta-carotene, beta-cryptoxanthin, zeaxanthin, and lutein on both sets of materials. Composite interval mapping identified chromosome regions with QTL for one or more individual carotenoids in the per se and testcross progenies. Notably QTL in the per se population map to regions with candidate genes, yellow 1 and viviparous 9, which may be responsible for quantitative variation in carotenoids. The yellow 1 gene maps to chromosome six and is associated with phytoene synthase, the enzyme catalyzing the first dedicated step in the carotenoid biosynthetic pathway. The viviparous 9 gene maps to chromosome seven and is associated with zeta-carotene desaturase, an enzyme catalyzing an early step in the carotenoid biosynthetic pathway. If the QTL identified in this study are confirmed, particularly those associated with candidates genes, they could be used in an efficient marker-assisted selection program to facilitate increasing levels of carotenoids in maize grain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available