4.7 Article

Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice

Journal

EXPERIMENTAL NEUROLOGY
Volume 185, Issue 1, Pages 26-35

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2003.09.002

Keywords

Huntington's disease; lentiviral vector; gene therapy; CNTF; ciliary neurotrophic factor; HD transgenic mice

Categories

Ask authors/readers for more resources

Ciliary neurotrophic factor (CNTF) has been shown to prevent behavioral deficits and striatal degeneration in neurotoxic models of Huntington's disease (HD), but its effect in a genetic model has not been evaluated. Lentiviral vectors expressing the human CNTF or LacZ reporter gene were therefore injected in the striatum of wild-type (WT) and transgenic mice expressing full-length huntingtin with 72 CAG repeats (YAC72). Behavioral analysis showed increased locomotor activity in 5- to 6-month-old YAC72-LacZ mice compared to WT-LacZ animals. Interestingly, CNTF expression reduced the activity levels of YAC72 mice compared to control animals. In both WT and YAC72 mice, CNTF expression was demonstrated in striatal punches, up to a year after lentiviral injection. Stereological analysis revealed that the number of LacZ and DARPP-32-positive neurons were decreased in YAC72-LacZ mice compared to WT-LacZ animals. Assessment of the benefit of CNTF expression in the YAC72 mice was, however, complicated by a down-regulation of DARPP-32 and to a lesser extent of NeuN in all mice treated with CNTF. The expression of the neuronal marker NADPH-d was unaffected by CNTF, but expression of the astrocytic marker glial fibrillary acidic protein (GFAP) was increased. Finally, a reduction of the number of striatal dark cells was observed in YAC mice treated with CNTF compared to LacZ. These data indicate that sustained striatal expression of CNTF can be achieved with lentiviruses. Further studies are, however, needed to investigate the intracellular signaling pathways mediating the long-tern effects of CNTF expression on dopamine signaling, glial cell activation and how these changes may affect HD pathology. (C) 2003 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available