4.4 Article

Mixing evaluation in the RH process using mathematical modelling

Journal

ISIJ INTERNATIONAL
Volume 44, Issue 1, Pages 82-90

Publisher

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.44.82

Keywords

RH-Degasser; mathematical model; mixing time; downleg snorkel size; snorkel immersion depth

Ask authors/readers for more resources

Mixing phenomena in a RH process has been studied numerically by solving the Navier Stokes equations along with the species concentration equation in a cartesian coordinate system comprising the geometry of the ladle and the snorkel fitted to it. The solution of the species concentration equation has been utilized to compute the mixing time in the RH ladle under different flow conditions. The numerical procedure and solution algorithm has been first verified by comparing the numerically obtained tracer dispersion curve, with the actual plant measurement, which agrees fairly well with each other. Mixing time for the RH process has been computed for different downleg snorkel size, snorkel immersion depth (SID) and steel velocity within the downleg and a non-dimensional mixing time correlation has been developed for the RH ladle taking the above three pertinent input parameters into considerations. The correlated non-dimensional mixing time equation predicts fairly well the computed result as well as the actual mixing time being observed in the plant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available