4.0 Article

The mechanism of suppression of strong electron correlations in FeBO3 at high pressures

Journal

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
Volume 99, Issue 3, Pages 566-573

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/1.1809686

Keywords

-

Ask authors/readers for more resources

The optical absorption spectra of iron borate (FeBO3) are measured at high pressures up to P = 82 GPa. A mechanism of suppression of strong electron correlations is proposed within the framework of the generalized tight binding method, which leads to the experimentally observed magnetic, electronic, and structural phase transitions. Taking into account peculiarities of the crystal structure of FeBO3 and the strong s-p hybridization of boron and oxygen, it is established that, as the distance between ions varies with increasing pressure, the crystal field parameter begins to play a decisive role in the electron transitions, while the influence of the d band broadening is negligibly small. Parameters of the theory are calculated as functions of the pressure. (C) 2004 MAIK Nauka / Interperiodica.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available