4.7 Review

Molecular neurophysiology of taste in Drosophila

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 61, Issue 1, Pages 10-18

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-003-3182-9

Keywords

taste receptor; gustatory receptor neuron; Drosophila; electrophysiology; enhancer trap; Gal4/UAS

Ask authors/readers for more resources

The recent identification of candidate receptor genes for sweet, umami and bitter taste in mammals has opened a door to elucidate the molecular and neuronal mechanisms of taste. Drosophila provides a suitable system to study the molecular, physiological and behavioral aspects of taste, as sophisticated molecular genetic techniques can be applied. A gene family for putative gustatory receptors has been found in the Drosophila genome. We discuss here current knowledge of the gustatory physiology of Drosophila. Taste cells in insects are primary sensory neurons whereupon each receptor neuron responds to either sugar, salt or water. We found that particular tarsal gustatory sensilla respond to bitter compounds. Electrophysiological studies indicate that gustatory sensilla on the labellum and tarsi are heterogeneous in terms of their taste sensitivity. Determination of the molecular bases for this heterogeneity could lead to an understanding of how the sensory information is processed in the brain and how this in turn is linked to behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available