4.5 Article

Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 68A, Issue 1, Pages 133-141

Publisher

WILEY-LISS
DOI: 10.1002/jbm.a.20064

Keywords

hydroxyapatite; silicon; TEM (transmission electron microscopy); bioactivity; defects

Ask authors/readers for more resources

Silicon-substituted hydroxyapatite (Si-HA) has been shown to lead to significantly increased rates of bone apposition when compared with phase-pure hydroxyapatite (HA) bioceramic implants (Patel N, et al. J Mater Sci Mater Med 2002;13:1199-1206). However, uncertainty remains about the mechanism by which Si increases the in vivo bioactivity. In this study, defect structures in Si-HA were observed and characterized for the first time using high-resolution transmission electron microscopy. Using tilting experiments and the g (.) b = 0 criterion for invisibility, the Burgers vectors of dislocations in phase-pure HA and 0.8 wt % Si-HA were characterized to be screw and mixed in character. Dislocations were observed in both pure HA and 0.8 wt % Si-HA with no significant difference in dislocation density between HA and Si-HA. However, our findings suggest that an increased number of triple junctions in Si-HA may have a significant role in increasing the solubility of the material and the subsequent rate at which bone apposes Si-HA ceramics. (C) 2003 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available