4.7 Article

The histone-like protein H1-S and the response of tomato leaves to water deficit

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 55, Issue 394, Pages 99-109

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erh022

Keywords

antisense; chromatin; H1 histone; relative water content; stomatal conductance; tomato; water-deficit stress

Categories

Ask authors/readers for more resources

Linker histone protein variants are expressed in different tissues, at various developmental stages or induced by specific environmental conditions in many plant species. In most cases, the function of these proteins remains unknown. In the work presented here an antisense strategy has been used to study the function of the drought-induced linker histone, H1-S of tomato. Three independent H1-S antisense tomato mutants, selected for their inability to accumulate H1-S in response to water stress, were studied. These mutants have been characterized at the physiological and morphological levels. Histone H1-S antisense transgenic plants developed normally indicating that H1-S does not play an important role in the basal functions of tomato development. No differences were detected in chromatin organization, excluding a structural role for H1-S in chromatin organization. However, differences between the wild-type and antisense plants were observed in leaf anatomy and physiological activities. This analysis indicates that H1-S has more than one function, at different times, in controlling plant water status, highlighting the complexity of the water stress response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available