4.4 Article

Angiotensin II reduces calcium uptake into bone

Journal

PEDIATRIC NEPHROLOGY
Volume 19, Issue 1, Pages 33-35

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s00467-003-1361-4

Keywords

bone; angiotensin II; Bartter syndrome; basic fibroblast growth factor

Ask authors/readers for more resources

Children with neonatal Bartter syndrome (NBS) have hypercalciuria, nephrocalcinosis, and osteopenia. A complex of basic-fibroblast growth factor (b-FGF) and a naturally occurring glycosaminoglycan has been identified in the serum and urine of NBS patients. This complex increases bone resorption in a bone disc bioassay system. Angiotensin II (AT II), which is increased in Bartter syndrome, increases the synthesis of b-FGF by cultured endothelial cells. Addition of 10(-8) M AT II to the bioassay, a concentration reported in Bartter syndrome patients, significantly decreased calcium uptake into bone discs [E/C 0.60 (0.04), P< 0.001 compared with buffer, normal E/C >0.90]. Adding b-FGF monoclonal antibody at 10 mug/ml [E/C 0.90 (0.06), P=NS] or indomethacin [E/C 1.00 (0.03), P=NS] to 10 M AT II neutralized this effect. In separate experiments, newborn rats were given intraperitoneal injections of AT II. Bone discs from these animals were used in the bioassay system and calcium uptake was markedly reduced compared with discs from rats injected with phosphate-buffered saline [AT II 6.6x10(-9), E/C 0.10 (0.04), P<0.001, AT II 3.3 x 10(-8), E/C 0.10 (0.05), P<0.001]. AT II decreases calcium uptake in the bone disc bioassay system. This effect can be abrogated by antibody to b-FGF or prostaglandin synthetase inhibition. These results support the hypothesis that in children with NBS, elevated levels of AT II stimulate local skeletal b-FGF synthesis, with a resultant increase in bone resorption via a prostaglandin-dependent pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available