4.5 Article Proceedings Paper

Selecting probabilistic approaches for reliability-based design optimization

Journal

AIAA JOURNAL
Volume 42, Issue 1, Pages 124-131

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.9036

Keywords

-

Ask authors/readers for more resources

During the past decade, numerous endeavors have been made to develop effective reliability-based design optimization (RBDO) methods. Because the evaluation of probabilistic constraints defined in the RBDO formulation is the most difficult part to deal with, a number of different probabilistic design approaches have been proposed to evaluate probabilistic constraints in RBDO In the first approach, statistical moments are approximated to evaluate the probabilistic constraint. Thus, this is referred to as the approximate moment approach (AMA). The second approach, called the reliability index approach (RIA), describes the probabilistic constraint as a reliability index. Last, the performance measure approach (PMA) was proposed by converting the probability measure to a performance measure. A guide for selecting an appropriate method in RBDO is provided by comparing probabilistic design approaches for RBDO from the perspective of various numerical considerations. It has been found in the literature that PMA is more efficient and stable than RIA in the RBDO process. It is found that PMA is accurate enough and stable at an allowable efficiency, whereas AMA has some difficulties in RBDO process such as a second-order design sensitivity required for design optimization, an inaccuracy to measure a probability of failure, and numerical instability due to its inaccuracy. Consequently, PMA has several major advantages over AMA, in terms of numerical accuracy, simplicity, and stability. Some numerical examples are shown to demonstrate several numerical observations on the three different RBDO approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available