3.8 Article

2D QSAR consensus prediction for high-throughput virtual screening. An application to COX-2 inhibition modeling and screening of the NCI database

Ask authors/readers for more resources

Using classification (SOM, LVQ, Binary, Decision Tree) and regression algorithms (PLS, BRANN, k-NN, Linear), this paper details the building of eight 2D-QSAR models from a 266 COX-2 inhibitor training set. The predictive performances of these eight models were subsequently compared using an 88 COX-2 inhibitor test set. Each ligand is described by 52 2D descriptors expressed as van der Waals Surface Areas (P_VSA) and its COX-2 binding IC50. One of our best predictive models is the neural network model (BRANN), which is able to select a subset, from the 88 ligand test set, that contains 94% COX-2 active inhibitors (PIC50 > 7.5) and detects 71% of all the actives. We then introduce a QSAR consensus prediction protocol that is shown to be more predictive than any single QSAR model: our C3 consensus approach is able to select a subset from the 88 ligand test set that contains 94% active inhibitors and 83% of all the actives. The 2D QSAR consensus protocol was finally applied to the high-throughput virtual screening of the NCI database, containing 193 477 organic compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available