4.6 Article

Surface-enhanced resonance Raman scattering as an analytical tool for single molecule detection

Journal

ANALYST
Volume 129, Issue 4, Pages 337-341

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b312812a

Keywords

-

Ask authors/readers for more resources

A perylene derivative, n-(n-butyl)-n'-(4-aminobutyl) perylene-3,4,9,10-tetracarboxylic acid diimide (simplified as nBu-PTCD-(CH2)(4)-NH2) has been chosen as the target molecule for studies involving single molecule detection (SMD) using Raman scattering. The enhancement of the Raman signal is the result of the multiplicative effects of two phenomena, resonance Raman scattering (RRS) and surface-enhanced Raman scattering (SERS), which leads to the resulting surface-enhanced resonance Raman scattering (SERRS) process. The SERRS spectra from a single molecule have been collected using both silver and gold colloids. The SMD detection of the fundamental vibrational frequencies characteristic of nBu-PTCD-(CH2)(4)-NH2 is complemented with the detection of some overtones and combinations from ring stretching modes at the single molecule level. The background characterization of the ensemble vibrational spectroscopy of the target perylene and its SERRS is also presented, which includes the UV-vis absorption, experimental and calculated Raman scattering and infrared absorption, and molecular organization using reflection-absorption infrared spectroscopy (RAIRS).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available