4.7 Article

Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites

Journal

COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING
Volume 36, Issue 11, Pages 1525-1535

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2005.02.007

Keywords

glass fibres; strength; electrical properties; damage mechanics; resin transfer moulding (RTM)

Ask authors/readers for more resources

Carbon nanotubes (CNTs) exhibit a high-potential for the reinforcement of polymers. The mechanical properties of potential matrices of fibre-reinforced polymers (FRP), such as epoxy resins, were significantly increased by low contents of carbon nanotubes (CNT) (tensile strength, Young's modulus and fracture toughness). Nano-particle-reinforced FRPs, containing carbon black (CB) and CNTs could successfully be manufactured via resin transfer moulding (RTM). A filtering effect of the nano-particles by the glass-fibre bundles was not observed. The glass-fibre-reinforced polymers (GFRP) with nanotube/epoxy matrix exhibit significantly improved matrix-dominated properties (e.g. interlaminar shear strength), while the tensile properties were not affected by the nano-fillers, due to the dominating effect of the fibre-reinforcement. The GFRP containing 0.3 wt% amino-functionalised double-wall carbon nanotubes (DWCNT-NH2) exhibit an anisotropic electrical conductivity, whereas the conductivity in plane is one order of magnitude higher than out of plane. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available